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Few studies have proposed methods for sample size deter-
mination and specification of passing criterion (e.g., number
needed to pass from a given size panel) for respirator fit-
tests. One approach is to account for between- and within-
subject variability, and thus take full advantage of the multiple
donning measurements within subject, using a random effects
model. The corresponding sample size calculation, however,
may be difficult to implement in practice, as it depends on
the model-specific and test panel-specific variance estimates,
and thus does not yield a single sample size or specific cut-
off for number needed to pass. A simple binomial approach
is therefore proposed to simultaneously determine both the
required sample size and the optimal cutoff for the number
of subjects needed to achieve a passing result. The method
essentially conducts a global search of the type I and type II
errors under different null and alternative hypotheses, across
the range of possible sample sizes, to find the lowest sample
size which yields at least one cutoff satisfying, or approximately
satisfying all pre-determined limits for the different error rates.
Benchmark testing of 98 respirators (conducted by the Na-
tional Institute for Occupational Safety and Health) is used
to illustrate the binomial approach and show how sample size
estimates from the random effects model can vary substantially
depending on estimated variance components. For the bino-
mial approach, probability calculations show that a sample
size of 35 to 40 yields acceptable error rates under different null
and alternative hypotheses. For the random effects model, the
required sample sizes are generally smaller, but can vary sub-
stantially based on the estimate variance components. Over-
all, despite some limitations, the binomial approach repre-
sents a highly practical approach with reasonable statistical
properties.
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INTRODUCTION

Assessing Fitting Characterisics in the Approval
of Respirators in the United States

Prior to 1972, the U.S. Bureau of Mines (USBM) was
responsible for testing and approval of respirators used in
the United States. Respirators for the protection of miners
from inhaling harmful coal dust were tested for fit using a
qualitative coal dust fit-test with a minimal number of USBM
employees as test subjects. In 1970, the National Institute for
Occupational Safety and Health (NIOSH) was mandated to
co-approve respirators with the USBM. NIOSH took over the
administration of the program as well as the USBM’s activities
for respirator performance testing. At that time coal dust was
replaced with isoamyl acetate vapor (an organic vapor) in the
fit-test. In 1995 the fit-testing of particulate filtering respirators
was abandoned with the transition to a new respirator approval
regulation because of the difficulty and lack of appropriate fit-
testing techniques.

Also at that time, NIOSH became the sole agency respon-
sible for approving most respirators, with those functions
now carried out by the NIOSH National Personal Protec-
tive Technology Laboratory (NPPTL). A number of studies
have been conducted to compare different fit-test methods
and assess characteristics associated with fit.(1–5) As NIOSH
revises its respirator approval standard, re-establishment of an
assessment of fitting characteristics in the approval process is
anticipated. The goal of any proposed fit-test criterion would
be to demonstrate the ability of a respirator to fit the facial
sizes and shapes for which it was designed. To achieve this, it
is necessary for the method be able to reject a high percentage
of ineffective respirators, while still passing a high percentage
of highly effective respirators.

The Role of Facial Dimensions in Respirator Testing
One assumption for interpreting fit-test results is that the

sample, or test panel, represents a random sample of the
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targeted population. Over the last 40 years, a variety of ap-
proaches have been utilized to approximate a representative
sample. Initially, the USBM program tested particulate filter-
ing respirators on three subjects with “varying facial shapes
and sizes,” including one full, one average, and one lean, a
provision that was criticized as being too vague.(6) In 1972,
Los Alamos National Laboratory (LANL) developed recom-
mendations for test panels to evaluate respirator fit, which,
based on a 1967–68 USAF survey, led to the LANL proposal
of 25-subject fit-test panels.(7,8)

Following criticisms of the LANL specifications (9), NIOSH
initiated a study to develop a more representative anthropomet-
ric database for civilian respirator users(10) and produce a panel
more representative of the age and racial/ethnic distributions
of the current civilian population. Based on the NIOSH an-
thropometric survey, Zhuang et al.(11–13) defined two new test
panels, including 1) the NIOSH bivariate Respirator Fit-test
Panel (NRFTP) with ten cells based on face length and face
width, and 2) the Principal Component Analysis (PCA) Panel,
which was defined from the first two principal components
(which are the independent linear combinations that explain
the maximum degree of variance) from 10 dimensions of face
size.

The goal of this current study is to outline criteria for
both the sample size requirement and cutoff for achieving
passing results, with the assumption that the NRFTP, PCA, or
other such panel is being utilized to achieve a sample that is
representative of the underlying worker population.

Goals of the Current Study
The previously described history behind fit-testing serves to

motivate the need for determining how many subjects should
be tested, and how many should be required to achieve a
passing fit factor. Discussing the role of facial dimensions in fit-
testing is also necessary to describe the basics of how subjects
might be selected for fit-testing a representative sample. The
goals of this current study are, however, strictly limited to
determining the number of subjects who should be required in
a respirator test panel, and the number who should be required
to achieve a passing result based on criteria that can be easily
implemented in practice. Numerous other considerations, such
as choosing between the NRFTP and the PCA (or some combi-
nation), determining how the manufacturer instructions affect
the selection of a test panel, and deciding on a cutpoint for
an acceptable fit factor, must also be considered in regulation
decisions. However, the current study is not meant to outline
the regulatory process, but, instead, aims to assess the key
statistical properties of the binomial test as it relates to sample
sizes for testing the percentage of workers achieving a given
fit factor.

Boostrapping and Random Effects Models
To assess quantitative fit of respirators, the Food and Drug

Administration (FDA) (14) recommends use of a random effects
model and bootstrap intervals, where fit factors are log-normal
with two components of variability: within- and between-

subject (15,16). Zhang and Kolz (17) subsequently presented a
closed-form normal approximation and showed that their ap-
proximation compares well with the more computationally in-
tensive bootstrap methods. They provide sample size estimates
for testing the proportion of users who receive a specified level
of protection. Subsequent discussion will focus on the closed-
form approximation.

An Alternative Approach Using Binomial Tests
Rather than use the repeated measures data on individual

subjects, and random effects modeling to account for within-
subject correlations, the proposed binomial approach catego-
rizes each subject as pass or fail based on the average fit factor
across multiple donnings. The type I and type II errors can
then be calculated directly from the binomial distribution(18).
A global search can then be implemented to find the required
sample size, and corresponding cutoffs for the number of
subjects needing to pass.

METHODS AND MATERIALS

Overview of the Methods
The approach is divided into four different sections. These

are: 1) estimating the parameter of interest as the proportion of
users achieving a sufficiently high fit, 2) defining the null and
alternative hypotheses and associated type I and type II error
rates, 3) sample size estimation, and 4) analysis of the NIOSH
benchmarking respirator fit-test data.

Each section outlines the needed terminology and concepts,
and equations and methods for both the random effects model
and binomial approach.

Estimation
Overall Estimation Concepts

The fit factor is defined as the ratio of the measured chal-
lenge agent concentration outside the respirator to its concen-
tration inside the respirator. The primary parameter of interest
from a quantitative fit-test is the proportion of users who
achieve a sufficiently high fit. Using the same notation as given
by Zhang and Kolz,(17) let θ denote the proportion of subjects
who achieve that fit factor, and let x denote the log-fit factor.
To illustrate the method, 100 is specified as an example for the
minimum acceptable fit factor (based on OSHA requirements
29 CFR 1910.134); using the notation of Zhang and Kolz(17),
x = loge(100) and θ = the proportion of subjects achieving a
fit factor of x. Other values, such as 10, could be specified for
x.

Estimation with the Random Effects Model
Assuming the log-fit factor for a given user of a given

respirator model is normal with mean μ and random intercept
a, the terms σ a

2 and σ e
2 represent the between-subject and

within-subject (or error) variance, respectively. Further, let 1-
q denote the probability with which we require the respirator
achieve the log-fit of x. θ can then be estimated using Equation
1 from Zhang and Kolz(17) (which is also given below).
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Estimating the proportion achieving sufficient fit

θ̂ = �
((

μ̂ − zqσ̂e − x
)
/σ̂a

)
(1)

Estimation for the Binomial Method
An alternative method is to dichotomize each of the n

subjects’ log-fit factors as being at least x (denote as yi =
1) or below x (yi = 0). The method for doing so—e.g., tak-
ing the mean or maximum log-fit factor for each subject (if
the fit factor is measured multiple times per subject) before
comparing to x—depends on the goals of the given fit-testing
study. For instance, if one wishes to assess potential fit of the
respirator, the maximum may be a more appropriate summary
measure (see Discussion). The estimate of θ is then the simple
proportion of subjects who achieve a log-fit factor of x. Note
that without utilizing individual repeated measures data on a
given subject, this method does not involve the probability q,
but instead dichotomizes the log-fit factor.

Type I and Type II Error
General Definitions

To calculate type I and type II error rates, the null and
alternative hypotheses are defined as H0: θ = θ0 and H1: θ

= θ1, respectively, where θ1 > θ0 and passing the respirator
equates to rejecting the null. Type I error, or falsely rejecting
the null, thus equates to falsely passing a respirator which in
truth achieves a log-fit of at least x for only 100 × θ0% of
the population. The maximum probability of a type I error (α)
is typically set equal to 0.05. This study also considers lower
values of α for lower values of θ0. For instance, we may want
to control α at 5% for a reasonably ineffective model, e.g.,
with θ0 = 0.6 but also control α at a more strict level, e.g., 1%,
for an even less effective model, e.g., with θ0 = 0.5. Type II
error is defined as falsely failing to reject the null, or falsely
failing a respirator model which in truth does achieve a log-fit
of at least x for 100 × θ1% of the population. The maximum
probability of a type II error, or β, is typically set equal to
0.20; subsequent analyses also consider β = 0.1.

Calculations of Error Rates for Each Method
For the random effects model, α and β are directly incor-

porated into the sample size calculation, as described below.
For the binomial method, the type I and type II error rates
are instead calculated for each possible cutoff value for the
number passing (defined as Y∗) and the hypothesized value of
θ . Type I error rates are calculated from Equation 2a and type
II error rates are calculated from Equation 2b. Each follows
directly from the binomial distribution.

Probability of falsely rejecting the null (passing under the
null)

P (Y ≥ Y ∗ |n, θ0) =
n∑

k=Y∗

(
n

k

)
θk

0 (1 − θ0)n−k (2a)

Probability of falsely not rejecting the null (failing under
the alternative)

P (Y ≥ Y ∗ |n, θ1) =
Y∗∑
k=0

(
n

k

)
θk

1 (1 − θ1)n−k (2b)

Sample Size Estimation
Sample Size for the Random Effects Model

For the random effects model, the required sample size
is given by Equation 3a below, which is the same formula
as Equation 3 in Zhang and Kolz(17) (using n instead of m
to denote the number of subjects); � represents the standard
normal density, and zα and zβ denote the critical values of
the standard normal distribution for the given type I and type
II error rates, respectively. Assuming a constant number of
measurements (m = mi) per subject, V represents the Fisher
information matrix (Equation 3b), g denotes the gradient for
the inverse normal function of θ (Equation 3c), and the variance
is estimated by gTVg, where zq denotes the critical value of the
standard normal distribution corresponding to the probability
with which we require the respirator achieve the log-fit of x.
Zhang and Kolz define V and g in their appendix (unnumbered,
p. 722) with some differences in notation (i.e., using n instead
of m to denote measurements per subject); w is defined as m/(1
+ mρ). Conducting the matrix multiplication of quantities
in Equations 3b and 3c (of dimension 3 × 3 and 3 × 1,
respectively) yields a scalar for gTVg.

Required sample size for the random effects model

n ≥
(
zα + zβ

)2
gT Vg(

�−1 (θ1) − �−1 (θ0)
)2 (3a)

The Fisher information matrix

V =

⎡
⎢⎣

σ 2/w 0 0

0 2σ 4
e

{
w−2 + m−2(m − 1)−1

} −2σ 4
e / {m(m − 1)}

0 −2σ 4
e / {m(m − 1)} 2σ 4

e /(m − 1)

⎤
⎥⎦

(3b)

Gradient for the inverse normal function of θ

g= [1/σa, − (μ − zqσe−x)/(2σ 3
a ),−zq/(σaσe)]T (3c)

Sample Size for the Binomial Method
For the binomial method, the required sample size is defined

as the minimum sample size where at least one value of
Y∗ meets the proposed type I and type II error rates, i.e.,
the probability of observing the given number of successes
or greater is below α under null θ0, and the probability of
observing less than the given number of successes is below
β under the alternative θ1. A global search over all critical
values for all sample sizes is then conducted to determine
which sample sizes and which cutoffs for the number passing
satisfy a given set of values for α and β. The required sample
size is then defined as the minimum value that simultaneously
achieves error rates within the specified limits.
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Analysis of Empirical Data
Findings of the two methods were then illustrated using

fit factors collected on 98 different respirator models, which
included both filtering facepiece and half-mask respirators.
These data were collected by NIOSH for benchmarking pur-
poses. These data are presented here for illustrative purposes
only, and are not necessarily reflective of the distributions we
would expect to see when respirators are fit to test panels
which reflect their intended target population. For each model,
regardless of its intended size (e.g., small, medium, large, or
any size), benchmarking data were collected using the NIOSH
bivariate Respirator Fit-test Panel (NRFTP) with 25 subjects
and 3 fit factors measured on each subject. To first summarize
the overall distributions, mean log-fit factors (MLFF) were
calculated on two levels: 1) data for the MLFFs on a given
subject were averaged over the 3 donnings, and 2) the MLFF
and standard deviation of the log fit-factor (SDLFF), across
subjects for a specific respirator were calculated and summa-
rized (with the quartiles of the distribution over those subject-
specific MLFF transformed back to the original scale).

These findings were summarized across the 98 models by
reporting results for the models representing quartiles of the
overall distribution of the MLFF. Selected q-q plots(18) were
also displayed to assess the normality of the log-fit factors
(LFF). In terms of the individual donnings, estimates of the
between- and within-subject variability were also summarized
across the 98 models. Results were then compared in terms of
how the between- and within-subject variability to calculate
the required sample size (with the random effects model) com-
pares with the sample sizes based on binomial probabilities.

RESULTS

Overview of Results
Critical values and corresponding error rates and sample

sizes for the binomial method are presented first since they are
independent of empirical data; since tests and required sample
sizes for the random effects model depend on the mean log-fit
factors and variability estimates, those findings are presented
after analysis of the empirical data. Analyses of empirical data
are divided into the assessment of normality, and the summary
of mean log-fit factors and variance components. Estimates of
required sample sizes are then presented for the random effects
model.

Error Rates across Sample Sizes and Critical
Values for the Binomial Method

Table I shows the type I and type II error rates for sample
sizes of 25 to 50 in increments of 5. Results are shown for
only a selected subset of results, where the critical value for
number passing is between 70% and 80% to highlight the
critical values with more optimal results.

Results show that requiring only 17 or 18 of 25 subjects to
pass yields elevated type I error rates of over 15%. In contrast,
increasing the critical value to 19 or 20 of 25 yields high type
II error rates, of over 20% for θ0 = 0.6. A sample size of 30

TABLE I. Type I and II Error Rates Using Binomial
Probabilities for Selecting Critical Values

Critical
Type II Error

Rates
Type I Error

Rates
Sample Value
Size (%) θ1 = 0.9 θ1 = 0.8 θ0 = 0.6 θ0 = 0.5

25 17 (68%) <0.1% 4.7% 27.4% 5.4%
18 (72%) 0.2% 10.9% 15.4% 2.2%
19 (76%) 0.9% 22.0% 7.4% 0.7%
20 (80%) 3.3% 38.3% 2.9% 0.2%

30 21 (70%) <0.1% 6.1% 17.6% 2.1%
22 (73%) 0.2% 12.9% 9.4% 0.8%
23 (77%) 0.8% 23.9% 4.4% 0.3%
24 (80%) 2.6% 39.3% 1.7% 0.1%

35 24 (69%) <0.1% 3.4% 19.5% 2.0%
25 (71%) <0.1% 7.5% 11.2% 0.8%
26 (74%) 0.2% 14.6% 5.8% 0.3%
27 (77%) 0.6% 25.5% 2.6% 0.1%
28 (80%) 2.0% 40.1% 1.0% <0.1%

40 28 (70%) <0.1% 4.3% 12.9% 0.8%
29 (73%) <0.1% 8.8% 7.1% 0.3%
30 (75%) 0.1% 16.1% 3.5% 0.1%
31 (78%) 0.5% 26.8% 1.6% <0.1%
32 (80%) 1.5% 40.7% 0.6% <0.1%

45 31 (70%) <0.1% 2.5% 14.3% 0.8%
32 (71%) <0.1% 5.2% 8.4% 0.3%
33 (73%) <0.1% 9.9% 4.5% 0.1%
34 (76%) 0.1% 17.4% 2.2% <0.1%
35 (78%) 0.4% 28.0% 0.9% <0.1%
36 (80%) 1.2% 41.2% 0.4% <0.1%

50 35 (70%) <0.1% 3.1% 9.6% 0.3%
36 (72%) <0.1% 6.1% 5.4% 0.1%
37 (74%) <0.1% 11.1% 2.8% <0.1%
38 (76%) 0.1% 18.6% 1.3% <0.1%
39 (78%) 0.3% 28.9% 0.6% <0.1%
40 (80%) 0.9% 41.6% 0.2% <0.1%

Note: Bold font denotes error rates meeting the pre-specified criteria (of
≤10%, 20%, 5%, and 1%, respectively).

yields similar results. For a sample size of 35, the lower critical
values, i.e., requiring 24 or 25 to pass, again yielded elevated
type I levels and critical values of 27 or 28 again yielded
elevated type II levels. For the critical value of 26, however,
results nearly met the pre-specified optimal levels (i.e., type
I error rates below 1% or 5% and type II error rates below
20% or 10% for the different null and alternative hypotheses),
except for a type I error of 5.8% (instead of ≤5%) for θ0 = 0.6.
Sample sizes of 40, 45, and 50 all yielded at least one critical
value that met the pre-specified criteria, including 30 of 40,
33 or 34 of 45, and 37 or 38 of 50. Results were similar for
this range of sample sizes. In summary, a sample size of 40 is
necessary to achieve the desired error rates, with a sample size
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FIGURE 1. Q-Q plots of two models with good to excellent correspondence to normality (color figure available online).

of 35 yielding only a slight increase over the stated α-level for
θ0 = 0.6.

Summary of Empirical Data
Fit factors were collected on 98 models, each tested on the

NIOSH bivariate Respirator Fit-test Panel (NRFTP) with 25
subjects and 3 donnings per subject. Results were not identified
by individual respirator model since 1) that was not the goal
of this article or this data collection effort, and 2) data were
collected using the NRFTP regardless of intended size of the
respirator model.

Normality of Subject-Specific Log-Fit Factors
by Respirator Model

The q-q plots (which plot percentiles of the ordered empiri-
cal data versus the percentiles of the standard normal distribu-
tion) were evaluated to assess normality of (subject-specific)
mean log-fit factors for a given respirator. For 58.2% of the
respirator models (57/98), the distribution was consistently
near normality, i.e., the percentile for the empirical data was
within 5% or at most 10% of the standard normal percentile
across the range of data. See Figure 1 for two such examples; in

one example the correspondence to normality is near perfect,
and in the other example there is relatively close agreement
with some minor discrepancies.

In another 25.5% (25/98) of respirator models, the devi-
ations from normality were noticeably larger, i.e., the per-
centile for the empirical data was at least 10% or 15% off
from the standard normal percentile for at least some of the
data. Figure 2 gives two examples of models which illustrate
these moderate to reasonably large deviations from normality.
The remaining 16.3% (16/98) of respirator models showed
large deviations in the range of a 20% to 25% difference in
the respective percentiles; see the two examples in Figure 3.
Results of these plots show clear deviations from normality
for around 40% of the respirator models tested. To evaluate
whether these deviations could be explained by testing models
of a particular size on the overall NRFTP, q-q plots of only
the 33 one-size-fits models were also evaluated separately.
The relative frequencies of deviations from normality (i.e.,
the percent of large, moderate, and small deviations) were
very similar to the entire sample of models; 4/33 (12.1%) had
large deviations from normality, 10/33 (30.3%) had moderate
deviations, and 19/33 (57.5%) had small deviations.
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FIGURE 2. Q-Q plots of two models showing moderately large deviations from normality (color figure available online).
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FIGURE 3. Q-Q plots of two models showing large deviations from normality (color figure available online).

Summary of Mean Log-Fit Factors
Table II summarizes the distributions of LFF (and FF in

the original scale using the geometric mean, denoted by GM)
by displaying summary statistics for the models representing
quartiles when ranked by the GM.

The median value (across the 98 models) for the GM FF
was 81.6; the worst fitting respirator had a GM of 5.6 and
the best fitting respirator had a GM of 2207. The middle 50%
of respirators had a GM between approximately 30 and 290.
As described above, caution is warranted in interpreting these
results since all respirator models (for purposes of this data
collection effort) were tested on the entire NRFTP regardless
of intended size of the respirator model. The purpose of de-
scribing these data was to simply provide an illustration of the
sample size methods as described below.

Summary of Variance Components
Table III displays the between- and within-subject variabil-

ity estimates, and ratio of variances, when sorted by either
the between or the within estimate (so that columns 2, 3, and
4, or 4, 5, and 6 represent variability estimates from a single
respirator model). These estimates are subsequently utilized to
calculate sample size requirements and significance tests. They

TABLE II. Summary of Model Fit Factor by Quartiles
of the Geometric Mean

Fit Factor (transformed back
to original scale)

Model Rank GM Median 1st Q 3rd Q

Minimum 5.6 5.3 3.6 8.3
1st Q 29.7 20.5 13.3 74.3
Median 81.6 57.7 25.4 347.4
3rd Q 290.1 283.8 65.3 1066.6
Maximum 2207.2 3229.5 1529.4 4782.6

GM = geometric mean.
SD = standard deviation.
1st Q and 3rd Q = the inter-quartile range.

also clearly illustrate the wide range of within- and between-
subject variances and the variability in that ratio, although
some fraction of the observed variability may be due to the
experimental design used to collect the benchmarking data.

Sample Size Estimates with the Random
Effects Model

The estimates for the mean log-fit factor (MLFF), and
σ a

2 and σ e
2 (between- and within-subject variance), were

used to illustrate potential results for the required sample
size using the random effects model based on Equation 3.
More specifically, to illustrate the range of potential sample
sizes with this method, we used the combination of the MLFF,
σ a

2, and σ e
2 corresponding the empirical data for the model

with the minimum, first quartile, median, third quartile, and
maximum values for ρ ( = σ a

2/σ e
2). Results show that the

required sample size for most models is in the range of 25 –
42, but substantial variability can exist in the required sample
size when the within-subject variability is large and the ratio
of between- to within-subject variability is low. Sample sizes
were calculated separately with q = 0.8 and q = 0.9, where q
denotes the percentage of the distribution of fit factors required
to be above 100, and are summarized in Table IV.

TABLE III. Summary of Between and Within Subject
Variance for the Log-Fit Factors

Variances sorted by
σ a

2
Variances sorted by

σ e
2

Model Rank σ 2
a σ 2

e ρ σ 2
a σ 2

e ρ

Minimum 0.083 0.057 1.438 0.083 0.057 1.438
1st Q 1.224 0.457 2.682 2.558 0.495 5.168
Median 2.515 1.757 1.431 6.018 0.916 6.573
3rd Q 3.407 2.149 1.586 2.331 1.534 1.520
Maximum 7.955 0.987 8.062 1.369 2.733 0.501

1st Q and 3rd Q = the inter-quartile range.
σ a and σ e = between and within subject variance (using data in the log scale).
ρ = σ a

2/σ e
2.

82 Journal of Occupational and Environmental Hygiene February 2014



www.manaraa.com

TABLE IV. Sample Sizes Using the Random Effects Approach to Test θ0 = 0.6 versus θ1 = 0.8

Variability Sample Size

Quartile of ρ MLFF (GM) σ a
2 σ e

2 ρ q = 0.8 q = 0.9

Minimum 4.601 (99.58) 0.524 2.713 0.193 416 899
1st quartile 5.966 (389.94) 2.114 1.390 1.521 25 27
Median 3.881 (48.47) 3.195 1.299 2.459 33 42
3rd quartile 3.951 (51.99) 2.969 0.774 3.835 28 34
Maximum 2.789 (16.26) 4.079 0.259 15.78 30 33

ρ = σ a
2/σ e

2.
MLFF = mean log-fit factor.
GM = geometric mean.
q = percentage of donnings required to surpass the required fit of loge(100).
σ a

2 and σ e
2 = between and within subject variance (using data in the log scale).

DISCUSSION

This article proposes the use of a simple binomial test for
determining whether a given respirator achieves sufficient

fit for a panel of subjects. The given calculations show that
sample sizes of 35 to 40 achieve, or approximately achieve
(within <1%) the targeted type I and II error rates (of 1%
or 5%, and 10% or 20%, depending on the given null and
alternative hypothesis, respectively) to discriminate between
respirators that provide a sufficiently high average fit factor
(e.g., of 100) to at least 80% of the population (versus the
null of sufficiently fitting 60% or less of the population). This
method gives a simple cutoff for passing or failing a respirator
using a given panel size.

Analysis of the NIOSH Benchmarking Data
The NIOSH benchmarking data were used in this study to

illustrate how the variance components might affect results of
sample size calculations with the random effects model. These
data, however, were not collected for purposes of making
inferences about specific respirators, and were not collected for
purposes of this study. Therefore, these data are only useful for
providing an illustrative example of how variance components
and sample size estimates might vary across different respira-
tors. Given these limitations of the data, results provide only
an illustration for the possible impact of within- and between-
subject variability that may be an overestimate of what would
be observed in practice.

Comparison of Methods
Although results were also illustrated for the random ef-

fects model, it is critical to note that findings are not meant
to investigate which of these two approaches is optimal. In
fact, the two methods are not directly comparable based on
empirical data, as the random effects model represents a more
rigorous criterion, where 100 × (1−q)% of the within-subject
distribution must meet the log-fit of x. In contrast, agencies
such as NIOSH may only wish to assess whether a given
respirator model is capable of providing a sufficient fit for a

sufficiently high percentage of subjects (as discussed at public
meetings in 2007 (19)). In those cases, the subject may be
classified as passing if the maximum log-fit factor exceeds the
given value of x. Hence, the empirical data and results of the
random effects are presented strictly to illustrate the degree of
variability that may be observed and how that variability can
affect sample size calculations, not to specifically compare
methods.

In terms of practical implementation, use of the random
effects model introduces substantial challenges. As noted,
within- and between-subject variability estimates can greatly
affect sample size calculations and subsequent significance
tests. Use of this method does not lead to a universal cutoff
for achieving a passing result, which may be very problematic
for agencies involved in fit-testing. This represents a major
limitation for public acceptance of any subsequent criterion
for respirator approval, especially since manufacturers may
wish to pretest their models and interpret those pre-test find-
ings. Different respirators, with different variability estimates,
would potentially have different cutoffs for passing. In con-
trast, the binomial test yields a single criterion for a given
panel size and a single estimate from the necessary panel
size.

Another specific concern for the random effects model is
the assumption of normality. For the NIOSH benchmark data,
many of the distributions varied substantially from normality.
It is unclear how substantially this might affect the findings.
The binomial test, however, is not dependent on any distribu-
tional assumptions.

Selecting the Final Sample Size and Passing
Percentage Cutoff

In general, requiring at least 26 of 35 test subjects to
achieve sufficient fit nearly meets the above considerations
while minimizing the required sample size. For a sample size
of 25, requiring at least 19 to pass yields the optimal cutoff,
but this criterion still yields a type II error over 20% for θ =
0.80, and a type I error of over 5% for θ = 0.60. Increasing
the sample size to 30, and selecting the optimal cutoff of 23 of
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30, does yield a sufficiently low type I error, but still equates
to a type II error over 20%. Increasing the sample size to 35
nearly reaches all specified requirements, except that the type
I error for θ = 0.60 is slightly over 5%.

CONCLUSION

The proposed approach uses binomial probabilities to cal-
culate error rates across different null and alternative

hypotheses about the respirator’s underlying effectiveness,
different sample sizes, and different minimum requirements
for the percentage of subjects required to pass fit-testing. An
inward leakage test is used as an illustration for applying
this approach. This approach, as compared to the previously
proposed random effects model, substantially simplifies the
problem of sample size estimation for respirator fit-testing,
simultaneously identifies a specific cutoff for the percentage
of test subjects required to pass, and achieves reasonable sta-
tistical properties that correspond to interpretable probability
statements of scientific interest. The method makes minimal
assumptions and does not require any preliminary data or
knowledge about the underlying distribution of fit factors
or partitioning of the variance components; development of
the test criteria is based solely on achieving adequately high
probabilities for rejecting ineffective respirators, and passing
effective respirators, and is thus well suited for estimating
sample sizes and passing criteria that are easily interpreted
and implemented in practical settings. For the binomial ap-
proach, probability calculations show that a sample size of
35 to 40 yields acceptable error rates under different null
and alternative hypotheses. For the random effects model, the
required sample sizes are generally smaller, but can vary sub-
stantially based on the estimate variance components. Over-
all, despite some limitations, the binomial approach repre-
sents a highly practical approach with reasonable statistical
properties.

DISCLAIMER

The findings and conclusions in this report are those of the
authors and do not necessarily represent the views of the

National Institute for Occupational Safety and Health.
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